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The purpose of this paper is to introduce a new method formed by fusing the
Lagrange–Galerkin and spectral element methods. The Lagrange–Galerkin method
traces the characteristic curves of the solution and, consequently, is very well suited
for resolving the nonlinearities introduced by the advection operator of the fluid
dynamics equations. Spectral element methods are essentially higher order finite
element methods that exhibit spectral (exponential) convergence, provided that the
solution is a smooth function. By combining these two methods, a numerical scheme
can be constructed that resolves, with extremely high precision, the nonlinearities of
the advection terms and the smooth regions of the flow generated by the diffusion
terms. This paper describes the construction of the Lagrange–Galerkin spectral el-
ement method which permits the use of any grid type including unstructured grids.
The only restriction at the moment is that the grid elements be quadrilaterals. The sta-
bility analysis of both methods demonstrates why these two methods are so powerful
individually and how their fusion leads to an improved scheme. The Lagrange–
Galerkin spectral element method is validated using the 1D and 2D advection and
advection–diffusion equations. The results of the stability analysis and the numerical
experiments demonstrate the utility of such an approach.c© 1998 Academic Press

Key Words:advection–diffusion equation; finite element; flux-corrected transport
(fct); icosahedral grid; Lagrange–Galerkin; Legendre polynomial; semi-Lagrangian;
spectral element; unstructured grid.

1. INTRODUCTION

The spectral element method combines the benefits extracted from both the spectral
method and the finite element method. The spectral element method can be described as
a method that can automatically generate any order polynomial basis function, as in the
spectral method, while allowing for the geometrical flexibility enjoyed by the finite element
method. The spectral element method may use any type of Jacobi polynomial to define
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the basis functions but typically either Chebyshev or Legendre polynomials are used. In
this paper, Legendre polynomials are used. The prosperity of the spectral element method
can be attributed to the fact that any order polynomial can be generated automatically,
concurrently with its numerical integration rule. If we select the Gauss quadrature points
for the integration rules to be the collocation points we get orthogonal basis functions which
means that the mass matrices are then diagonal. There is also no need to define the basis
functions explicitly because we can define implicit relationsa priori for the inner products
of the functions and their derivatives. Since the collocation points are not equi-spaced,
staggered grids can be generated automatically by using varying order polynomials for the
different variables (say the pressure and velocity in Navier–Stokes) as is done in [9] for
the shallow-water equations which then satisfies the Babuska–Brezzi condition, thereby
avoiding the development of any spurious pressure modes. Many researchers have used the
spectral element method successfully for Stokes flows [13], the shallow-water equations
[9, 10], and Navier–Stokes.

The advection terms in the governing equations of fluid motion present formidable chal-
lenges to many discretization methods, including Galerkin methods. These terms make the
operator non-self-adjoint and as a result, prevents the optimization of these methods. By
combining the time derivative and the advection terms into the Lagrangian derivative and
then discretizing the resulting operator, many of these difficulties are circumvented; this is
the Lagrange–Galerkin method. This method not only increases the solution accuracy but
also allows for much larger time steps therefore making it potentially more efficient than
Eulerian methods. Lagrange–Galerkin methods have increased in popularity in the last 10
years because they offer increased accuracy and efficiency by virtue of their independence
on the CFL condition. Researchers have used this method successfully for advection [5, 11],
advection–diffusion [7], shallow water, and Navier–Stokes.

There have been few attempts at combining Lagrangian methods with high order spatial
discretization methods. In [15], a method is presented which combines the spectral method
with the method of characteristics. While this approach offers accuracy it does not offer
geometric flexibility due to the restriction on the grid dictated by the spectral method. In
[8], a characteristic-based spectral element method is introduced which uses an explicit
time-stepping scheme in order to get the values at the foot of the characteristics. This
approach preserves the Eulerian-like structure of the equations, thereby avoiding the search
for the departure points that is typically associated with the Lagrange–Galerkin method.
It is unclear how the structure-preserving schemes affect the stability. In any event, our
approach is shown to be unconditionally stable and, because it is constructed in a general
fashion, it is perfectly suited for all types of grids, including unstructured grids.

The following section describes the implementations of both the spectral element and
Lagrange–Galerkin spectral element methods on the 1D advection–diffusion equation.

2. ONE-DIMENSIONAL ADVECTION-DIFFUSION EQUATION

2.1. Spectral Element Method

For stability analysis purposes and for describing the algorithms, we shall use the 1D
advection–diffusion equation. The time discretization is handled in this paper by theθ

algorithm which defines a family of explicit and implicit schemes. The governing equation
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is defined as

∂ϕ

∂t
+ u

∂ϕ

∂x
= ν ∂

2ϕ

∂x2
. (1)

The spatial discretization by the spectral element method follows closely the discretization
of the finite element method. After applying the method of weighted residuals we obtain
the relation ∫ x0+1x

x0

ψiψ j dx
∂ϕ j

∂t
+
∫ x0+1x

x0

ψiψkuk
∂ψ j

∂x
dxϕ j

= −ν
∫ x0+1x

x0

∂ψi

∂x

∂ψ j

∂x
dxϕ j + ν

[
ψi
∂ψ j

∂x
ϕ j

]x0+1x

x0

,

whereψ are the basis functions in terms of physical space, andi, j, k= 0, . . . , N, where
N is the order of the basis functions. After mapping to computational space by virtue of
ξ = (2/1x)(x − x0)− 1 we arrive at

Mi j =
∫ x0+1x

x0

ψiψ j dx = 1x

2

∫ +1

−1
hi (ξ)h j (ξ) dξ

Ai j =
∫ x0+1x

x0

ψiψkuk
∂ψ j

∂x
dx =

∫ +1

−1
hi (ξ)hk(ξ)uk

∂h j

∂ξ
(ξ) dξ

Di j = ν
∫ x0+1x

x0

∂ψi

∂x

∂ψ j

∂x
dx = ν 2

1x

∫ +1

−1

∂hi

∂ξ
(ξ)
∂h j

∂ξ
(ξ) dξ

Ri = ν
[
ψi
∂ψ j

∂x
ϕ j

]x0+1x

x0

= ν 2

1x

[
hi (ξ)

∂h j

∂ξ
(ξ)ϕ j

]+1

−1

,

whereh(ξ) are the Legendre cardinal basis functions, M is the mass matrix, A is the advec-
tion matrix, D is the diffusion matrix, and R is the boundary vector. The time discretization
by theθ algorithm yields the relation

[Mi j +1tθ(Ai j + Di j )]ϕ
n+1
j = [Mi j −1t (1− θ)(Ai j + Di j )]ϕ

n
j

+1t
[
θRn+1

i + (1− θ)Rn
i

]
(2)

which for θ = 0 yields the forward Euler (explicit and first order in time), forθ = 1
2 yields

the trapezoidal rule (implicit and second order), and forθ = 1 yields the backward Euler
(implicit and first order). Because of the higher order achieved with the trapezoidal rule
(θ = 1

2) this is the value that is used throughout the paper.
Typically, explicit methods have been used in conjunction with the spectral element

method, although there have been some attempts at using implicit methods [9]. The ad-
vantage in using explicit methods arise from the nonsymmetry and large bandwidths of
the system of equations resulting from the spectral element discretization. Because of
this nonsymmetry, it makes it very difficult to select a robust and efficient matrix solver.
In [9], a GMRES solver was used but was not found sufficiently cost-effective. In this
paper, an LU decomposition (direct solver) is used for simplicity. Therefore, an implicit
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time discretization may not be the most efficient possibility, but it is nonetheless used in
order to show how the Lagrange–Galerkin formulation is constructed on top of this Eu-
lerian version. In the Lagrange–Galerkin version described in the next section, the time
discretization must be implicit in order for the method to be unconditionally stable.

The spatial accuracy is determined by the order of the basis functions and will be of order
O(1xN+1). As an example, forN= 1 we have linear elements, but second-order spatial
accuracy. In this article, the element basis functions are the Legendre cardinal functions
(for details on these basis functions see [13]). To keep the algorithm as general and as
automatic as possible, we evaluate the integrals numerically. In other words, the mass
matrix is evaluated as

Mi j = 1x

2

Q∑
q=0

wqhi (ξq)h j (ξq),

where Q represents the number of Legendre–Gauss–Lobatto quadrature points. The re-
maining matrices are evaluated similarly. In order to obtain exact integrations for this matrix,
at leastQ= N+ 1 quadrature points are required. This is the minimum required because
an integration rule of orderN will integrate exactly any polynomial of order 2N− 1, but
since the mass matrix contains polynomials of order 2N, then higher order integration rules
are required. The rules given above (i.e.,Q= N+ 1) will integrate exactly polynomials
of order 2N + 1, which is more than sufficient. In typical implementations of the spectral
element method,Q= N is used. In Section 3 (Stability Analysis), the effect of using exact
versus nonexact integration is discussed.

2.2. Lagrange–Galerkin Spectral Element Method

Lagrange–Galerkin methods belong to the general class of upwinding methods. These
methods incorporate characteristic information into the numerical scheme. The Lagrangian
form of (1) is

dϕ

dt
= ν ∂

2ϕ

∂x2
(3)

dx

dt
= u(x, t), (4)

whered/dt denotes the total derivative and is defined as

d

dt
= ∂

∂t
+ u

∂

∂x
.

Applying the method of weighted residuals directly onto the Lagrangian operator yields the
two-time level direct Lagrange–Galerkin method (for an explanation of the weak versus the
direct Lagrange-Galerkin method see [5])

[Mi j +1tθDi j ]ϕ
n+1
j = [Mi j −1t (1− θ)Di j ]ϕ̃

n
j +1t

[
θRn+1

i + (1− θ)R̃n
i

]
, (5)

whereϕn+1=ϕ(x, t + 1t) andϕ̃n=ϕ(x − α, t) are the solutions at the arrival(xa= x)



          

118 FRANCIS X. GIRALDO

and departure points(xd= x−α), respectively. Integrating (4) by the mid-point rule yields

α = 1tu

(
x − α

2
, t + 1t

2

)
(6)

which defines a recursive relation for the Lagrange–Galerkin departure points.
As in the Eulerian version described previously, the valueθ = 1

2 is used throughout for the
Lagrange–Galerkin method. Note that, although this defines an implicit scheme, it yields
a much easier system of linear equations to solve because the global coefficient matrix is
symmetric. This is different from the Eulerian version and this property is critical to the
efficiency of the Lagrange–Galerkin method. Now, instead of using an LU decomposition or
some nonsymmetric iterative solver, we can use classic methods that are robust and efficient
such as the conjugate gradient method. However, for the sake of fairness in comparing the
computational costs (Table VII) of the algorithms an LU decomposition is also used for the
Lagrange–Galerkin method.

We still need to consider how we are going to interpolate the values ofϕ at the departure
points(xd= x− α). Interpolation is required because, in general, the departure points will
not fall on grid points but rather between them. Typically, the interpolations are constructed
using one of the following three types of functions: Lagrange, Hermite, or spline polyno-
mials. The difficulty with these methods is that they require some structure in the grid (i.e.,
curvilinear coordinates) and while this does not affect the 1D case, it would be quite limit-
ing in the 2D case where the elements are not required to have a true structure. (A caveat
is in order here: cubic splines can be constructed from unstructured data, but these meth-
ods are generally impractical for CFD-type computations because they are prohibitively
expensive.) The incentive for combining the spectral element method with the Lagrange–
Galerkin method is due to the high order polynomials of the spectral element method that
are also locally defined within each element. We can determine in which spectral element a
given departure point lies and then use the basis functions within the element to construct
the interpolation required by the Lagrange–Galerkin method. Since the order of the basis
functions are typically high order, the interpolation will be of a sufficiently high order to
ensure the high order spatial and temporal accuracy of the numerical scheme.

Since the Legendre cardinal basis functions have to be able to interpolate any departure
point, they have to be constructed explicitly. The Legendre cardinal basis functions can be
written using the definition for Lagrange polynomials,

hi (ξ) =
N∏

j=0,
j 6=i

(
ξ − ξ j

ξi − ξ j

)
(7)

and its derivatives are

∂hi

∂ξ
(ξ) =

N∑
k=0,
k 6=i

N∏
j=0,
j 6=i

(
1

ξi − ξk

)
·
(
ξ − ξ j

ξi − ξ j

)
, (8)

where theξi , ξ j , ξk are the permutations of the Legendre–Gauss–Lobatto (collocation)
points. These two relations are very general and valid for any order Legendre cardinal
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basis function and can be used quite easily to generate the desired interpolating polyno-
mial for the Lagrange–Galerkin method. In the next section, the stability analysis of both
methods is performed on the 1D advection–diffusion equation.

3. STABILITY ANALYSIS

3.1. Spectral Element Method

Equation (2) can be written in the following more explicit form:

Q∑
q=0

wq

[
hi (ξq)h j (ξq)+ 2θ

1tu

1x
hi (ξq)

∂h j

∂ξ
(ξq)+ 4θ

1tν

1x2

∂hi

∂ξ
(ξq)

∂h j

∂ξ
(ξq)

]
ϕn+1

j

=
Q∑

q=0

wq

[
hi (ξq)h j (ξq)− 2(1− θ)1tu

1x
hi (ξq)

∂h j

∂ξ
(ξq)

− 4(1− θ)1tν

1x2

∂hi

∂ξ
(ξq)

∂h j

∂ξ
(ξq)

]
ϕn

j .

These are element equations but in order to study the stability at the nodes the grid point
equations must be obtained. Therefore, the contributions of the elements to each node must
be summed. Below, the analysis for the external and internal nodes (collocation points) are
derived.

DEFINITION 1. External nodes are those points which define the boundary of a spectral
element. In 1D, the external nodes are the left- and right-most collocation points corre-
sponding toi = 0 andN.

DEFINITION 2. Internal nodes are any other collocation points corresponding toi =
1, . . . , N− 1.

By substituting the nondimensional parameters

σ = 1tu

1x
(Courant number), µ = 1tν

1x2
(diffusion coefficient)

and introducing the Fourier modes

ϕn+1
+(1+ξ j )/2 = Gn+1eı(+(1+ξ j )/2)φ, ϕn+1

−(1−ξ j )/2 = Gn+1eı(−(1−ξ j )/2)φ,

whereφ is the phase angle andı=√−1 gives the total contributions to the external node

to be

N∑
j=0

[(
Ml

j + 2θσ Al
j + 4θµDl

j

)
Gn+1eı(−(1−ξ j )/2)φ

+ (Mr
j + 2θσ Ar

j + 4θµDr
j

)
Gn+1eı(+(1+ξ j )/2)φ

]
=

N∑
j=0

(Ml
j − 2(1− θ)σ Al

j − 4(1− θ)µDl
j

)
Gneı(−(1−ξ j )/2)φ

+(Mr
j − 2(1− θ)σ Ar

j − 4(1− θ)µDr
j

)
Gneı(+(1+ξ j )/2)φ

 ,
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where

Ml
j =

Q∑
q=0

wqhN(ξq)h j (ξq), Mr
j =

Q∑
q=0

wqh0(ξq)h j (ξq)

Al
j =

Q∑
q=0

wqhN(ξq)
∂h j

∂ξ
(ξq), Ar

j =
Q∑

q=0

wqh0(ξq)
∂h j

∂ξ
(ξq)

Dl
j =

Q∑
q=0

wq
∂hN

∂ξ
(ξq)

∂h j

∂ξ
(ξq), Dr

j =
Q∑

q=0

wq
∂h0

∂ξ
(ξq)

∂h j

∂ξ
(ξq),

and the superscriptsl andr denote the contributions from the left and right elements to
the node. Upon dividing byGneıφ , using Euler’s formulae±ıφ = cosφ ± ı sinφ, and
multiplying by the complex conjugate, we get

G = Re(G)− ı Im(G),

where

Re(G) =
∑N

i=0

∑N
j=0

(
Rer

i Rel
j + Imr

i Iml
j

)∑N
i=0

∑N
j=0

(
Rel

i Rel
j + Iml

i Iml
j

) , Im(G) =
∑N

i=0

∑N
j=0

(
Rel

j Imr
i −Rer

i Iml
j

)∑N
i=0

∑N
j=0

(
Rel

i Rel
j + Iml

i Iml
j

) ,
(9)

and

Rer
j =

(
Ml

j − 2(1− θ)σ Al
j − 4(1− θ)µDl

j

)
cos

(
1− ξ j

2

)
φ

+ (Mr
j − 2(1− θ)σ Ar

j − 4(1− θ)µDr
j

)
cos

(
1+ ξ j

2

)
φ

Imr
j =

(
Ml

j − 2(1− θ)σ Al
j − 4(1− θ)µDl

j

)
sin

(
1− ξ j

2

)
φ

− (Mr
j − 2(1− θ)σ Ar

j − 4(1− θ)µDr
j

)
sin

(
1+ ξ j

2

)
φ

Rel
j =

(
Ml

j + 2θσ Al
j + 4θµDl

j

)
cos

(
1− ξ j

2

)
φ

+ (Mr
j + 2θσ Ar

j + 4θµDr
j

)
cos

(
1+ ξ j

2

)
φ

Iml
j =

(
Ml

j + 2θσ Al
j + 4θµDl

j

)
sin

(
1− ξ j

2

)
φ

− (Mr
j + 2θσ Ar

j + 4θµDr
j

)
sin

(
1+ ξ j

2

)
φ
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For the internal node the corresponding relation is

N∑
j=0

[(
Mr

j + 2θσ Ar
j + 4θµDr

j

)
Gn+1eı(+(1+ξ j )/2)φ

]
=

N∑
j=0

[(
Mr

j − 2(1− θ)σ Ar
j − 4(1− θ)µDr

j

)
Gneı(+(1+ξ j )/2)φ

]
along with

Rer
j = +

(
Mr

j − 2(1− θ)σ Ar
j − 4(1− θ)µDr

j

)
cos

(
1+ ξ j

2

)
φ

Imr
j = −

(
Mr

j − 2(1− θ)σ Ar
j − 4(1− θ)µDr

j

)
sin

(
1+ ξ j

2

)
φ

Rel
j = +

(
Mr

j + 2θσ Ar
j + 4θµDr

j

)
cos

(
1+ ξ j

2

)
φ

Iml
j = −

(
Mr

j + 2θσ Ar
j + 4θµDr

j

)
sin

(
1+ ξ j

2

)
φ.

Using these relations the amplification factor is defined as

|G| =
√

Re2(G)+ Im2(G) (10)

and the dispersion error as

εΦ = Φ/σφ, (11)

where

Φ = arctan

(
Im(G)

Re(G)

)
is the phase angle.

3.2. Lagrange–Galerkin Spectral Element Method

Equation (5) can be written in the more explicit form:

Q∑
q=0

wq

[
hi (ξq)h j (ξq)+ 4θ

1tν

1x2

∂hi

∂ξ
(ξq)

∂h j

∂ξ
(ξq)

]
ϕn+1

j

=
Q∑

q=0

wq

[
hi (ξq)h j (ξq)− 4(1− θ)1tν

1x2

∂hi

∂ξ
(ξq)

∂h j

∂ξ
(ξq)

]
ϕ̃n

j .

However, we still need to introduce the interpolation ˜ϕn
j . In the Lagrangian version of this

algorithm, the spectral element basis functions are used as the interpolation functions. In
other words, first we need to determine in which element the departure point lies which can
be performed efficiently with the bisection method in 1D and the quadtree method in 2D.



             

122 FRANCIS X. GIRALDO

The interpolation within the element is written as

ϕ̃n
j =


∑N

k=0 ϕ
n
−p−1p−(1−ξk)/2hk(ξ̃ j ), if α̃ ≤ 0,∑N

k=0 ϕ
n
−p−1p+(1+ξk)/2hk(ξ̃ j ), if α̃ > 0,

whereξ̃ j = ξ j − (α̃ + 1) andα̃ ∈ [−1, 1] is the real part of the Courant numberσ and is
related to it by the relation

σ = p+ α̃ + 1

2
, (12)

wherep is the integer part ofσ . In addition, the following definitions are also required:

ξ̃ j =
{
ξ̃ j = ξ̃ j + 2, 1p = 1 if ξ̃ j < −1,

ξ̃ j , 1p = 0 if ξ̃ j ≥ −1.
(13)

The parameter1p is required because in most instances the departure points of the external
nodes, of a given element, may lie within two different grid elements; in this situation,1p
determines in which of the two grid elements the departure points of the internal nodes lie.

Introducing the Fourier modes

ϕn
−p−1p+(1+ξ j )/2 = Gneı(−p−1p+(1+ξ j )/2)φ, ϕn

−p−1p−(1−ξ j )/2 = Gneı(−p−1p−(1−ξ j )/2)φ

we get the total contributions to the external node to be

N∑
j=0

[(
Ml

j + 4θµDl
j

)
Gn+1eı(−(1−ξ j )/2)φ + (Mr

j + 4θµDr
j

)
Gn+1eı(+(1+ξ j )/2)φ

]
=

N∑
j=0

(Ml
j − 4(1− θ)µDl

j

){∑N
k=0 Gneı(−p−1p−(1−ξk)/2)φhk(ξ̃ j )

}
+(Mr

j − 4(1− θ)µDr
j

){∑N
k=0 Gneı(−p−1p+(1+ξk)/2)φhk(ξ̃ j )

}


and after simplifying they yield

G = [Re(G)− ı Im(G)]e−ıpφ,

where Re(G) and Im(G) are given by (9) and

Rer
j =

(
Ml

j − 4(1− θ)µDl
j

)
cos

(
1p+ 1− ξ j

2

)
φ

+ (Mr
j − 4(1− θ)µDr

j

)
cos

(
−1p+ 1+ ξ j

2

)
φ
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Imr
j =

(
Ml

j − 4(1− θ)µDl
j

)
sin

(
1p+ 1− ξ j

2

)
φ

− (Mr
j − 4(1− θ)µDr

j

)
sin

(
−1p+ 1+ ξ j

2

)
φ

Rel
j =

(
Ml

j + 4θµDl
j

)
cos

(
1p+ 1− ξ j

2

)
φ

+ (Mr
j + 4θµDr

j

)
cos

(
−1p+ 1+ ξ j

2

)
φ

Iml
j =

(
Ml

j + 4θµDl
j

)
sin

(
1p+ 1− ξ j

2

)
φ

− (Mr
j + 4θµDr

j

)
sin

(
−1p+ 1+ ξ j

2

)
φ.

For the internal node the corresponding relation is

N∑
j=0

[(
Mr

j + 4θµDr
j

)
Gn+1eı(+(1+ξ j )/2)φ

]
=

N∑
j=0

[(
Mr

j − 4(1− θ)µDr
j

){ N∑
k=0

Gneı(−p−1p+(1+ξk)/2)φhk(ξ̃ j )

}]
,

along with

Rer
j = +

(
Mr

j − 4(1− θ)µDr
j

)
cos

(
−1p+ 1+ ξ j

2

)
φ

Imr
j = −

(
Mr

j − 4(1− θ)µDr
j

)
sin

(
−1p+ 1+ ξ j

2

)
φ

Rel
j = +

(
Mr

j + 4θµDr
j

)
cos

(
−1p+ 1+ ξ j

2

)
φ

Iml
j = −

(
Mr

j + 4θµDr
j

)
sin

(
−1p+ 1+ ξ j

2

)
φ.

The amplification factor is given by (10), but the dispersion error is now defined as

ε8 = pφ +8
σφ

. (14)

Remark1. The 2D stability analysis follows quite easily from the 1D analysis. That
is, the theory behind the 2D analysis follows closely the 1D analysis but the 2D analysis
requires much more algebra and book keeping due to the 2D analogs of Eqs. (12) and (13).
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The 1D analysis yields much insight into the stability of the 2D numerical scheme; however,
the 1D analysis tells us nothing about the effects of using distorted quadrilateral elements
on the stability and accuracy of the scheme.

3.3. Stability Analysis Results

3.3.1. Spectral Element Method

The amplitude factors and dispersion errors for both methods are illustrated up to a
Courant number ofσ = 4. In addition, results are illustrated for exact(Q= (2N + 1)/2)
and nonexact(Q= N) integration for the spectral element method. For brevity, comparisons
for the Lagrange–Galerkin spectral element method using exact and non–exact integration
are not shown because the spectral element method contains all of the matrices contained
within the Lagrangian version. However, the results for the external and internal nodes of
both methods are presented.

Figures 1 and 2 show the dispersion errors for the spectral element method for pure
advection using exact and nonexact integration, respectively. (The amplification factors
are not illustrated because this method experiences no amplification errors.) ForN= 1,
large differences exist between the exact and nonexact methods. Note that a discontinuity
appears to be present for all phase angles atσ = 0. This just shows that at this Courant
number nothing is happening (i.e. stationary flow) and so the amplitude factor and the
normalized dispersion error should be 1, meaning that no errors exist at all. ForN= 2, the
differences are obvious but they are not too great. Finally, forN ≥ 4 no differences exist
between the two methods. This is also true for the internal nodes. From here on, only the
nonexact integration results are illustrated.

Figure 2 shows that forN= 1, the scheme is atrocious and in fact is never used. However,
the exact integration method is equivalent to the finite element method with linear elements.
At N= 2, the situation is much improved but lagging and leading errors are still present,
albeit quite small, forσ ≤ 1

2. For N ≥ 4, the scheme suffers absolutely no phase errors for
σ ≤ 1

4. This is also true for the internal nodes (Fig. 3). For1
4 ≤ σ ≤ 1

2 the scheme suffers
errors for the short waves (largeφ), but is nondispersive for the long waves. As we increase
σ , especially beyond12, the scheme continues to experience lagging errors for the short
waves and for a large part of the long waves. The scheme is well behaved only for phase
anglesφ≤π/4. This analysis shows that it does not make sense to use Courant numbers
that are too large not because of stability reasons but for accuracy. It does make sense,
however, to use high Courant numbers if some sort of dissipation mechanism is introduced
which will hinder the propagation of the dispersive waves. Lagrange–Galerkin methods do
precisely this.

3.3.2. Lagrange–Galerkin Spectral Element Method

Figures 4 and 5 show the external node amplitude factors and dispersion errors, respec-
tively, for the Lagrange–Galerkin spectral element method for pure advection while Fig. 6
shows the results for the internal nodes. ForN= 1, the amplification factors are clearly
cyclical and do not change for differentσ , but rather are only a function of the real part
α̃ (as opposed to the integer partp) of σ . These results show that for nearσ = 0 or 1



     

FIG. 1. The external node dispersion error for the 1D advection equation as a function ofσ (Courant num-
ber) andφ (phase angle) for the spectral element method using exact integration for (a)N= 1; (b) N= 2, and
(c) N ≥ 4.



    

FIG. 2. The external node dispersion error for the 1D advection equation for the spectral element method
using nonexact integration for (a)N= 1, (b) N= 2, and (c)N ≥ 4.
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FIG. 3. The internal node dispersion error for the 1D advection equation for the spectral element method
using nonexact integration for (a)N= 2 and (b)N ≥ 4.

the scheme exhibits absolutely no dissipation and very little dispersion, but forσ = 1
2 the

scheme is excessively dissipative for the short waves, but this behavior is desirable because
these tend to be where the scheme is most dispersive. For the long waves, the scheme is
slightly dissipative and nondispersive. This scheme is in fact identical to the typical first-
order upwinding scheme, at least forσ ≤ 1, and the results for this scheme match the results
given in [11] for a finite difference semi-Lagrangian method with linear interpolation. Thus
the Lagrange–Galerkin method can be likened to the upwinding method but valid for all
Courant numbers including those far greater than 1. ForN= 2, the scheme becomes less
dissipative but also less dispersive. ForN ≥ 4 the scheme exhibits neither dissipation nor
dispersion errors for both the external and internal nodes; for this reason, the stability plots
for the high order cases(N ≥ 4) are not shown.
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FIG. 4. The external node amplification factor for the 1D advection equation for the Lagrange–Galerkin
spectral element method using nonexact integration for (a)N= 1 and (b)N= 2.

For the spectral element method with diffusion, the dispersion errors are identical to those
obtained for pure advection but now due to the viscosity it now experiences some dissipation.
For the Lagrange–Galerkin spectral element method with diffusion, the dispersion errors
also look rather similar to the pure advection results while the amplitude errors are greater
in this case (Fig. 7) and they linger for allσ andN but only for large phase angles.

This analysis shows that the Lagrange–Galerkin spectral element method forN ≥ 4
works extremely well for advection-dominated flows. For advection–diffusion, there is
some dissipation associated with the viscosity which is to be expected and in no way deters
from the accuracy of the scheme. In fact, the addition of the Lagrange–Galerkin method to
the spectral element method introduces the dissipation mechanism that the spectral element
method needs for high Courant numbers without diminishing the accuracy of the scheme.
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FIG. 5. The external node dispersion error for the 1D advection equation for the Lagrange–Galerkin spectral
element method using nonexact integration for (a)N= 1 and (b)N= 2.

The fusion of the Lagrange–Galerkin method with the spectral element method on the 2D
advection-diffusion equation is explored in the following section.

4. TWO-DIMENSIONAL ADVECTION–DIFFUSION EQUATION

4.1. Spectral Element Method

The 2D advection–diffusion equation can be given in a similar fashion to (1) as

∂ϕ

∂t
+ u ·∇ϕ = ν∇2ϕ (15)
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FIG. 6. The internal node (a) amplification factor and (b) dispersion error for the 1D advection equation for
the Lagrange–Galerkin spectral element method using nonexact integration forN= 2.

and the spatial discretization is written as∫
Ä

ψiψ j dÄ
∂ϕ j

∂t
+
∫
Ä

ψiψkuk ·∇ψ j dÄϕ j

= −ν
∫
Ä

∇ψi ·∇ψ j dÄϕ j + ν
∫
0

(n ·∇ϕ)ψi d0

which yields the time discretization

[Mi jkl +1tθ(Ai jkl + Di jkl )]ϕ
n+1
kl = [Mi jkl −1t (1− θ)(Ai jkl + Di jkl )]ϕn

kl

+1t
[
θRn+1

i j + (1− θ)Rn
i j

]
,



     

FIG. 7. The external node amplification factor for the 1D advection–diffusion equation for the Lagrange–
Galerkin spectral element method using nonexact integration forµ= 0.01 and (a)N= 1, (b) N= 2, and
(c) N ≥ 4.
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where the matrix terms are

Mi jkl =
∫
Ä

ψi jψkl dÄ =
∫ +1

−1

∫ +1

−1
|J(ξ, η)|hi (ξ)h j (η)hk(ξ)hl (η) dξ dη

Ai jkl =
∫
Ä

ψi jψmnumn ·∇ψkl dÄ

=
∫ +1

−1

∫ +1

−1
|J(ξ, η)|hi (ξ)h j (η)hm(ξ)hn(η)umn

∂hk

∂ξ
(ξ)hl (η)

∂ξ

∂x
dξ dη

+
∫ +1

−1

∫ +1

−1
|J(ξ, η)|hi (ξ)h j (η)hm(ξ)hn(η)vmnhk(ξ)

∂hl

∂η
(η)
∂η

∂y
dξ dη

Di jkl = ν
∫
Ä

∇ψi j ·∇ψkl dÄ

= ν
∫ +1

−1

∫ +1

−1
|J(ξ, η)|∂hi

∂ξ
(ξ)h j (η)

∂hk

∂ξ
(ξ)hl (η)

(
∂ξ

∂x

)2

dξ dη

+ ν
∫ +1

−1

∫ +1

−1
|J(ξ, η)|hi (ξ)

∂h j

∂η
(η)hk(ξ)

∂hl

∂η
(η)

(
∂η

∂y

)2

dξ dη

Ri j = ν
∫
0

n · [ψi∇ψ jϕ j ] d0 = ν
∫ +1

−1

[
hi j
∂hkl

∂n
ϕkl

]
dn

for i, j, k, l ,m, n= 0, . . . , N, wheren is the unit normal vector andJ is the Jacobian of the
transformation from physical to computational space. The coordinates within an element
are approximated by the basis functions by

x =
N∑

i=0

N∑
j=0

xi j hi (ξ)h j (η)

and its derivative are given by

∂x

∂ξ
=

N∑
i=0

N∑
j=0

xi j
∂hi

∂ξ
(ξ)h j (η),

whereN represents the number of collocation points in theξ andη directions. The remainder
of the derivatives are obtained following the same procedure. Note that the extension to
three dimensions is immediately obvious from the two-dimensional case.

To keep the algorithm as general and as automatic as possible, we evaluate the integrals
numerically. Therefore, the mass matrix is evaluated as

Mi jkl =
Q∑

q=0

Q∑
r=0

|J(ξq, ηr )|wqr hi (ξq)h j (ηr )hk(ξq)hl (ηr ),

whereQ represents the number of Legendre–Gauss–Lobatto quadrature points in theξ and
η directions. In general, for exact integration of the matrices we require thatQ= (cN+1)/2,
wherec is an integer constant denoting the factor of the maximum order matrix. In the case
of the advection–diffusion equation,c= 2 which corresponds to the mass matrix. For the
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case of the shallow water equations or the Navier–Stokes (and Euler) equations,c= 3 and
corresponds to many terms, one of which is the advection operator. Note, however, that the
1D stability analysis showed that forN ≥ 4 it makes no difference whether the exact or
nonexact integration is used. Numerical results confirm this and for this reason the cheaper
nonexact integration method is used throughout the paper.

4.2. Lagrange–Galerkin Spectral Element Method

The 2D advection–diffusion equation in Lagrangian form is written as

dϕ

dt
= ν∇2ϕ

dx

dt
= u,

dy

dt
= v

which yields the matrix relation

[Mi jkl +1tθDi jkl ]ϕ
n+1
kl = [Mi jkl −1t (1− θ)Di jkl ]ϕ̃

n
kl +1t

[
θRn+1

i j + (1− θ)R̃n
i j

]
,

where the departure points are defined asxd= x−α and the trajectories are obtained
from

α = 1tu
(

x− α
2
, t + 1t

2

)
(16)

and the matrices are defined as in the Eulerian case. Note that the trajectory relation only
gives the departure pointxd and says nothing of where this point is located. Therefore,
some means of searching the elements of the grid must be devised to determine which
element contains the departure point in order to interpolate the variables (in this caseϕ

andu) using the element basis functions. For general grids, the best approach is to use a
quadtree data structure. For the icosahedral grids used as one test case in this paper, the data
structure described in [5] should be used. But once the element claiming the departure point
is found, we still need to determine its coordinates in terms of the computational space; this
is essential because all of the spectral element basis functions are written in terms of the
computational coordinates. Equation (16) will only give the coordinates of the departure
point in terms of the physical space. The departure point coordinates in physical space can
be written using the basis functions in the form

xd =
N∑

i=0

N∑
j=0

xi j hi (ξd)h j (ηd)

and by virtue of Newton’s method, we write the iterative scheme for the roots(ξd, ηd) as

Fk+1 = Fk +∇Fk
(
ξ k

d , η
k
d

) · (dξ, dη) = 0, (17)

where

F =
N∑

i=0

N∑
j=0

xi j hi (ξd)h j (ηd)− xd.
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This leads to the solutions

dξ =

−Fk
1
∂Fk

1

∂η

−Fk
2
∂Fk

2

∂η


 ∂Fk

1

∂ξ

∂Fk
1

∂η

∂Fk
2

∂ξ

∂Fk
2

∂η


, dη =

 ∂Fk
1

∂ξ
−Fk

1

∂Fk
2

∂ξ
−Fk

2


 ∂Fk

1

∂ξ

∂Fk
1

∂η

∂Fk
2

∂ξ

∂Fk
2

∂η


,

where

ξ k+1
d = ξ k

d + dξ, ηk+1
d = ηk

d + dη

which only requires five iterations at most. Thus if(ξ k+1
d , ηk+1

d )∈ [−1, 1], then the departure
point is contained within this element. Clearly, asN increases, the cost of searching will
increase by an order ofN2. So, instead of using the full polynomial of degreeN, we use the
vertices of the quadrilateral element (linear polynomial) to find the associated(ξd, ηd) for
a given(xd, yd). Upon obtaining the departure point in terms of the computational space
coordinates the interpolation is then obtained using theNth-order basis functions of the
element. The use of the linear basis functions to find(ξd, ηd) has absolutely no impact
on the accuracy of the scheme, while costing far less than using the fullNth-order basis
functions.

4.2.1. Searching Algorithms

Because the Lagrange–Galerkin method requires the calculation of departure points, the
success of the method hinges on the rapidity of the searching algorithms. The object of the
searching algorithm is to determine in which element a particular departure point lies.

QuadTree. For general grids, the best strategy is to find the closest node (grid point) to
the departure point by virtue of a quadtree data structure. Letquad tree[1 : ntree, 1 : 7]
be an integer array which stores this quadtree. This array stores the following infor-
mation:

• quad tree[i , 1−4] store the four children of this quad.
• quad tree[i , 5] stores the position of this quad with respect to its parent.
• quad tree[i , 6] stores the location of its parent.
• quad tree[i , 7] stores the number of nodes contained within this quad.

This defines a standard quadtree data structure; however, it is important to note that there is
no need to use all of the nodes comprising the spectral element grid. In fact, only the
vertices of each quadrilateral element (i.e., the four corner nodes) are required while
the rest of the collocation points can be omitted. This saves a lot of effort in the searching
process especially for high order grids (i.e. largeN). Upon finding this nearest neighbor
(closest node), we then search through the list of elements which claim this node and check
for inclusion using the iterative approach defined in (17). There are usually no more than
six elements claiming each node, even for distorted unstructured grids, which means that
the iterative approach does not dominate the computational cost of the scheme. For highly
distorted grids, however, the departure point may not necessarily lie within one of the
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elements claiming the nearest neighbor. In this case, during the sweep through the element
list claiming the nearest neighbor, the minimum distance between the departure point and
the element nodes is stored. The element node yielding the minimum distance is considered
to be the new nearest neighbor. If no inclusion is found, then the new nearest neighbor is
used and the process is continued. Therefore, in the worst case scenario, only two nearest
neighbor loops through the iterative approach are required. This can have adverse affects
on the efficiency of the scheme if this case arises often; for the grids used in this paper, this
situation did not present itself.

IcoTree. When a specific type of grid is being used, it is imperative to exploit any
properties that it may have. For instance, the icosahedral grid used as one test case in the
next section has an inherent tree data structure associated with it. In this case, the quadtree
is abandoned for the ad-hoc data structure that can be constructed for this type of grid.
The icosahedral grid on the plane is constructed by dividing a hexagon into six equilateral
triangles. Then each triangle can be subdivided into four smaller equilateral triangles and so
on. The quadrilateral spectral elements are then obtained by dividing each triangle into three
quadrilaterals. Letico tree[1 : ntree, 1 : 8] be an integer array which stores the icosahedral
tree. This array stores the following information:

• ico tree[i , 1−3] store the location of the three nodes which defines this triangle.
• ico tree[i , 4] stores the location of its parent.
• ico tree[i , 5−8] store the locations of its four children.

In addition, another array is required which stores the spectral elements contained within
each of the triangles. Letitree intma[1 : ntree, 1 : 3] be this array. Clearly the icosahedral tree,
like the quadtree, is also of order log4 ntree. The difference between the two data structures
is that the icosahedral tree finds the triangle which contains the departure point, while the
quadtree finds the nearest neighbor. Once this triangle is found, the arrayitree intma[i,
1−3] is used to loop through the three spectral elements contained within this triangle.
Thus the iterative approach given in (17) only requires sweeping through three elements
which will always cost far less than the quadtree which may require looping through six
elements.

5. NUMERICAL EXPERIMENTS

For the numerical experiments, the following terms are used in order to compare the
performance of the schemes: theL2 error norm,

‖e‖L2 =
∫
Ä
(ϕexact− ϕ)2 dÄ∫
Ä
ϕ2

exactdÄ
,

and the first and second moments of mass,

M1 =
∫
Ä
ϕ dÄ∫

Ä
ϕexactdÄ

, M2 =
∫
Ä
ϕ2 dÄ∫

Ä
ϕ2

exactdÄ
.

The L2 error norm compares the root mean square percentage error of the numerical and
exact solutions, while the first moment measures the percentage mass of the system, and the
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second moment measures the amount of dissipation inherent within the numerical scheme.
The ideal scheme should yield an error norm of zero and first and second moments of one.

5.1. One-Dimensional Advection–Diffusion Equation

For the spectral element method, the governing equation is given by (1) and the discre-
tized equation by (2). For the Lagrange–Galerkin spectral element method, the governing
equation is given by (3) and (4), while the discretized equation is given by (5).

The initial condition is given as

ϕ(x, 0) = e−(x−xo)
2/2λ2

o

with periodic boundary conditions which yields the exact solution

ϕ(x, t) = λo√
λ2

o + 2νt
e−(x−xo−ut)2/2(λ2

o+2νt),

whereλo= 1
8, xo= 0, andx ∈ [−1, 1] with the velocityu= 2. The results are given for one

revolution(t = 1.0) of the initial wave.
Table I lists the pure advection(µ= 0) results for the spectral element (SEM) and

Lagrange–Galerkin spectral element methods (L-G SEM) forσ ≈ 0.25. Because of the
variable distance between any two nodes due to the Legendre–Gauss–Lobatto collocation
points, the Courant numbers are never exactly the same when using varying orders ofN
(polynomial order) andNE (number of elements) for a given number ofNP (total grid
points). However, the Courant numbers used are equal at least to one decimal place. The re-
sults show that both methods give impressive results, but forN ≥ 4 the Lagrange–Galerkin
spectral element method is superior to the spectral element method. Table II shows the same
results but forµ= 0.01. These results are qualitatively similar to theµ= 0 case. Table III
shows theµ= 0 results for variousσ for the Lagrange–Galerkin spectral element method.
From the stability analysis, the spectral element method is adversely affected by the increase
in σ , but the Lagrange–Galerkin method is not. The numerical results also seem to indicate
that the Lagrange–Galerkin method, in fact, improves with increased Courant numbers.

TABLE I

Results for the 1D Advection Equation for the Spectral Element and Lagrange–Galerkin

Spectral Element Methods forσ≈ 0.25

Method N NE 1t σ ‖e‖L2 M1 M2

SEM 1 10 0.025000 0.25 1.21× 10−0 1.0000 1.0000
2 10 0.012500 0.25 2.84× 10−1 1.0000 1.0000
4 10 0.004000 0.23 1.47× 10−1 1.0000 1.0000
6 10 0.002000 0.24 1.87× 10−3 1.0000 1.0000
8 10 0.001250 0.25 7.30× 10−4 1.0000 1.0000

10 10 0.000800 0.24 2.99× 10−4 1.0000 1.0000

L-G SEM 1 10 0.025000 0.25 8.01× 10−1 1.0000 0.2316
2 10 0.012500 0.25 4.13× 10−1 0.9996 0.7061
4 10 0.004000 0.23 4.23× 10−2 1.0000 1.0179
6 10 0.002000 0.24 1.06× 10−3 1.0000 0.9997
8 10 0.001250 0.25 2.04× 10−5 1.0000 1.0000

10 10 0.000800 0.24 3.32× 10−7 1.0000 1.0000
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TABLE II

Results for the 1D Advection–Diffusion Equation for the Spectral Element and Lagrange–

Galerkin Spectral Element Methods forσ≈ 0.25 andµ = 0.01

Method N NE 1t ν ‖e‖L2 M1 M2

SEM 1 10 0.025000 0.016000 8.89× 10−1 1.0009 1.1268

2 10 0.012500 0.008000 1.13× 10−1 0.9997 0.9978

4 10 0.004000 0.002980 5.16× 10−3 1.0000 1.0001

6 10 0.002000 0.001500 1.44× 10−3 1.0000 1.0000

8 10 0.001250 0.000800 6.30× 10−4 1.0000 1.0000

10 10 0.000800 0.000545 2.74× 10−4 1.0000 1.0000

L-G SEM 1 10 0.025000 0.016000 6.48× 10−1 1.0009 0.4126

2 10 0.012500 0.008000 2.63× 10−1 0.9993 0.8413

4 10 0.004000 0.002980 1.96× 10−2 1.0000 1.0082

6 10 0.002000 0.001500 5.67× 10−4 1.0000 0.9998

8 10 0.001250 0.000800 1.28× 10−5 1.0000 1.0000

10 10 0.000800 0.000545 2.20× 10−7 1.0000 1.0000

Remark2. Table III shows that the Lagrange–Galerkin spectral element method im-
proves as the Courant number is increased. This would be the case for ever increasing
Courant numbers, if and only if the trajectories could be computed exactly. If this were
possible, then the scheme could be run with infinitely large Courant numbers without
any deterioration in accuracy. But since this is not the case, taking large enough Courant
numbers will eventually lead to large errors in the trajectory calculation which will then
severely diminish the accuracy of the scheme. In fact, the reason why we see an in-
crease in accuracy for large Courant numbers is because fewer interpolations are being
used.

TABLE III

Results for the 1D Advection Equation for the Lagrange–Galerkin Spectral Element

Method for Various σ

Method N NE 1t σ ‖e‖L2 M1 M2

L-G SEM 4 10 0.004000 0.23 4.23× 10−02 1.0000 1.0179

4 10 0.008000 0.46 2.03× 10−02 1.0000 1.0077

4 10 0.033333 1.93 1.75× 10−03 0.9999 1.0005

6 10 0.002000 0.24 1.06× 10−03 1.0000 0.9997

6 10 0.004000 0.47 4.82× 10−04 1.0000 1.0000

6 10 0.015625 1.84 1.44× 10−04 1.0000 1.0000

8 10 0.001250 0.25 2.04× 10−05 1.0000 1.0000

8 10 0.002500 0.49 8.29× 10−06 1.0000 1.0000

8 10 0.010000 1.99 2.41× 10−06 1.0000 1.0000

10 10 0.000800 0.24 3.32× 10−07 1.0000 1.0000

10 10 0.001600 0.48 1.40× 10−07 1.0000 1.0000

10 10 0.006250 1.89 2.44× 10−08 1.0000 1.0000
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5.2. Two-Dimensional Advection–Diffusion Equation

5.2.1. Problem Statement

The initial condition is given by

ϕ(x, y, 0) = e−[(x−xo)
2+(y−yo)

2]/2λ2
o

which yields the exact solution

ϕ(x, y, t) = λ2
o

λ2
o + 2νt

e−[ x̃2+ỹ2]/2(λ2
o+2νt)

having the far boundary conditions

ϕ(x, y, t)→ 0 for (x, y)→∞,
whereλo= 1

8, (xo, yo)= (− 1
2, 0), (x, y)∈ [−1, 1] with the velocity field

u = +y, v = −x

and

x̃ = x − xo cost − yo sint, ỹ = y+ xo sint − yo cost.

The following sections show the results after one revolution of the initial wave for the
spectral element and Lagrange–Galerkin spectral element methods on various grids. The
period for one revolution of the wave is 2π which means that one revolution corresponds
to t = 2π so that the actual time step taken for each experiment is defined as

1tactual= 2π1t reported,

where1t reportedis the time step reported throughout the paper. The Courant number for all
test cases is defined as

σ = max

(
1tU

1s

)
,

whereU =√u2
m + v2

m and1s=
√
1x2+1y2 with (1x,1y)being the distances between

any two adjacent nodes and(um, vm) being the velocities at the midpoint of the two adjacent
nodes. The nondimensional diffusion coefficient is defined in a similar fashion as

µ = max

(
1tν

1s2

)
.

5.2.2. Square Grid

Tables IV and V list the results for the spectral element (SEM) and Lagrange–Galerkin
spectral element methods (L-G SEM) for various values ofN for µ= 0 andµ= 0.01 on a
uniform square grid. In these tablesN andNE denote the polynomial order and the number
of elements in each direction. In other words, for the caseN= 4, NE = 10, there are 10×10
total elements(NT

E ) and 41× 41 total grid points (NP) in the grid. The results obtained
for the 2D cases are quantitatively similar to the 1D results, where the Lagrange–Galerkin
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TABLE IV

Results for the 2D Advection Equation for the Spectral Element and Lagrange–

Galerkin Spectral Element Methods on a Square Grid forσ≈ 0.50

Method N NE 1t σ ‖e‖L2 M1 M2

SEM 1 10 0.012500 0.53 1.25× 10−0 0.9742 1.0000
2 10 0.006250 0.54 3.98× 10−1 0.9854 1.0000
4 10 0.002000 0.51 2.21× 10−2 1.0003 1.0000
6 10 0.001000 0.52 2.04× 10−3 1.0000 1.0000
8 10 0.000625 0.55 7.52× 10−4 1.0000 1.0000

10 10 0.000400 0.54 3.12× 10−4 1.0000 1.0000

L-G SEM 1 10 0.012500 0.53 9.41× 10−1 0.4529 0.0211
2 10 0.006250 0.54 6.02× 10−1 1.0119 0.4666
4 10 0.002000 0.51 7.38× 10−2 1.0002 1.0448
6 10 0.001000 0.52 1.72× 10−3 1.0000 0.9994
8 10 0.000625 0.55 6.70× 10−5 1.0000 1.0000

10 10 0.000400 0.54 5.13× 10−5 1.0000 1.0000

spectral element method now surpasses the spectral element method in accuracy forN ≥ 6.
Note that this behavior is experienced by the pure advection and the advection–diffusion
problems. In fact, the diffusion assists both numerical algorithms by smoothening out the
waves. Table VI shows the results forµ= 0 for various values ofσ . These results are once
again in direct agreement with the 1D results and, hence, with the stability analysis. In the
next sections, the grid and contours for various grids are illustrated for the pure advection
problem only as this is the more difficult case.

5.2.3. Icosahedral Grid

The icosahedral grid used in this test case is the planar analog of the icosahedral triangular
grid on the sphere presented in [5]. In the spherical case, the initial icosahedron contains

TABLE V

Results for the 2D Advection–Diffusion Equation for the Spectral Element and Lagrange–

Galerkin Spectral Element Methods on a Square Grid forσ≈ 0.50 andµ = 0.01

Method N NE 1t ν ‖e‖L2 M1 M2

SEM 1 10 0.012500 0.005100 7.13× 10−1 0.9424 0.9751
2 10 0.006250 0.002550 6.48× 10−2 0.9890 0.9922
4 10 0.002000 0.000950 4.51× 10−3 0.9989 1.0000
6 10 0.001000 0.000460 1.37× 10−3 0.9997 1.0000
8 10 0.000625 0.000255 6.39× 10−4 0.9998 1.0000

10 10 0.000400 0.000174 3.21× 10−4 1.0000 1.0000

L-G SEM 1 10 0.012500 0.005100 8.06× 10−1 0.4173 0.0771
2 10 0.006250 0.002550 2.79× 10−1 0.9944 0.8010
4 10 0.002000 0.000950 1.83× 10−2 0.9990 1.0099
6 10 0.001000 0.000460 8.50× 10−4 0.9997 0.9998
8 10 0.000625 0.000255 2.85× 10−4 0.9998 1.0000

10 10 0.000400 0.000174 1.99× 10−4 1.0000 1.0000
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TABLE VI

Results for the 2D Advection Equation for the Lagrange–Galerkin Spectral Element Method

on a Square Grid for Various σ

Method N NE 1t σ ‖e‖L2 M1 M2

L-G SEM 4 10 0.0010000 0.26 8.82× 10−02 1.0001 1.0539
4 10 0.0020000 0.51 7.38× 10−02 1.0002 1.0448
4 10 0.0080000 2.04 1.96× 10−02 1.0002 1.0059

6 10 0.0005000 0.26 2.04× 10−03 1.0000 0.9993
6 10 0.0010000 0.52 1.72× 10−03 1.0000 0.9994
6 10 0.0040000 2.08 9.70× 10−04 1.0000 1.0000

8 10 0.0003125 0.28 4.14× 10−04 1.0000 1.0000
8 10 0.0006250 0.55 6.70× 10−05 1.0000 1.0000
8 10 0.0025000 2.21 3.71× 10−05 1.0000 1.0000

10 10 0.0002000 0.27 2.05× 10−04 1.0000 1.0000
10 10 0.0004000 0.54 5.13× 10−05 1.0000 1.0000
10 10 0.0016000 2.15 1.60× 10−05 1.0000 1.0000

12 grid points and 20 equilateral triangles; whereas in the planar case, the initial grid is a
hexagon containing 7 grid points and 6 equilateral triangles. Upon generating the refined
grid as is described in [5] the resulting triangles are then subdivided to form quadrilaterals
in order for the spectral element discretization to be used. In order to split the triangles into
quadrilaterals, we find the midpoints of each of the triangle edges and form quadrilaterals
by connecting these midpoints to the centroid of the triangle.

Figure 8 shows the result for the Lagrange–Galerkin spectral element method with
N= 8, NT

E = 72, andNP = 4705 with a Courant number ofσ = 2.43. The error norm for
this problem is 5.50× 10−3. The uniform square grid which has the closest number of grid
points(NP) is the caseN= 6, NE = 10 which hasNP = 3721 grid points. Table IV gives
an error norm of 1.72×10−3 for this case forσ = 0.52. Thus the icosahedral grid has given
slightly less accurate results than the uniform square grid, but, considering the unstructured
nature of the grid and the Courant number being used, this result is quite good. In addition,

FIG. 8. The grid and contours for the Lagrange–Galerkin spectral element method on an icosahedral grid
with N= 8, NT

E = 72, NP = 4705, andσ = 2.43.
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although results for other orders ofN are not shown (for brevity), the method shows spectral
convergence even for this type of grid.

This icosahedral grid has a very efficient data structure associated with it that can be
used for searching. The other beneficial property of this grid is that all the quadrilateral
elements are exactly the same size because the parent triangles are equilaterals. This is an
important property if a uniform representation throughout the domain is desired, which
is usually the case for geophysical flows on the surface of the sphere where grid biasing
is typically undesirable. However, if totally unstructured grids are desired, as is the case
with adaptive grids in computational fluid dynamics, will this strategy work? The following
section addresses this case.

5.2.4. Unstructured Grid

Figure 9 shows the grid and contours for the Lagrange–Galerkin spectral element method
using an unstructured grid withN= 8, NT

E = 96, andNP = 6273. The error norm for this
example is 3.08× 10−4 for σ = 2.50. The unstructured grid generator is described in [4].
However, this grid generator creates only triangles and so the triangles have to be subdi-
vided into quadrilaterals. The uniform square grid caseN= 8, NE = 10 havingNP = 6561
corresponds the closest to this unstructured grid case. The uniform square grid case yields
an error norm of 6.70× 10−5 for σ = 0.55. Once again, better results are obtained for the
uniform square grid but, considering the lack of structure of the current grid and the largeσ ,
this result is quite impressive. In fact, the results on the unstructured grid also show spectral
convergence asN is increased.

The results for this example show that the Lagrange–Galerkin spectral element method
does indeed work, even on such an irregular grid as the one presented here. In addition, the
scheme yields an extremely accurate result, even when large Courant numbers are used.
This example truly shows the power and flexibility of the proposed strategy of combining
the Lagrange–Galerkin method with the spectral element method.

FIG. 9. The grid and contours for the Lagrange–Galerkin spectral element method on an unstructured grid
with N= 8, NT

E = 96, NP = 6273, andσ = 2.50.
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5.2.5. Deformational Flow

In this section, the Smolarkiewz deformational flow problem is used to test the stability
of the numerical scheme. The initial function is assumed to be a cone given by

ϕ(x, y, 0) = h

(
1− r

R

)
,

whereh = 1, r =
√
(x − xo)2+ (y− yo)2, R = 0.15, (xo, yo) = ( 1

2,
1
2), (x, y) ∈ [0, 1]

with the velocity field

u = 0.32π sin 4πx sin 4πy, v = 0.32π cos 4πx cos 4πy.

This velocity field defines a set of 16 symmetrical vortices. The fluid particles remain for
all time within the vortices in which they resided initially. Therefore, because each fluid
particle is trapped within its vortex it is constrained to move along streamlines and for
this reason the cone deforms. The analytic solution to this problem is presented in [14].
Figure 4a in [14] corresponds to the solution att = 0.65625 for our grid dimensions.

Any scheme which is not monotonic will not resolve this test case well because any small
amount of dispersion is exacerbated by the vortical flow. In addition, this is not the best test
case for the spectral element method because high order methods are only guaranteed to
yield exponential convergence when the function it is meant to resolve is smooth. Clearly
this is not the case for this test problem. Nonetheless, it makes for an interesting problem for
showing the strengths and weaknesses of the Lagrange–Galerkin spectral element method.

The Lagrange–Galerkin spectral element was run on a uniform structured grid using a
total of 81×81 grid points using various combinations ofN andNE. The low order schemes
perform far better than the high order schemes due to their monotonicity property. In other
words, the first-order scheme (N= 1) captures the essence of the analytic solution quite
well, but it is far too diffusive to be of any use. Neither the Lagrange–Galerkin method nor the
spectral element method are naturally monotonic. Therefore, in order to resolve this test case
accurately some monotonicity-preserving mechanism must be introduced into the numerical
scheme. The simplest approach is to use the flux-corrected transport (FCT) scheme. This is
not a new idea and, in fact, has been used previously to suppress spurious oscillations near
large gradients (such as shock waves) in high order spectral element methods [3]. In brief,
the FCT scheme uses a limiting procedure between a high order and a low order scheme
to get the highest possible order without introducing a new local extremum. Therefore, we
write the interpolated value at the departure point ˜ϕ as the linear function

ϕ̃ = ϕ̃L + γ (ϕ̃H − ϕ̃L),

where the superscriptsH andL denote the high and low order interpolations andγ ∈ [0, 1]
represents the value of the limiting (or weighting). The goal is to obtain the maximum value
of γ which gives the highest order interpolation without producing a new maximum or
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FIG. 10. The grid and contours for the Lagrange–Galerkin spectral element method for the deformational
flow problem withN= 4, NE = 20, andσ = 1.02.

minimum value within the element. The computation ofγ can be written, as in [1], as

Q+ = ϕ+ − ϕ̃L , Q− = ϕ− − ϕ̃L , P = ϕ̃H − ϕ̃L

γ =


min
(
1, Q−

P

)
, if P < 0,

0, if P = 0,

min
(
1, Q+

P

)
, if P > 0,

whereϕ+ andϕ− are the maximum and minimum values at the collocation points of the
element which claims the departure pointxd. The high order interpolation ˜ϕH is obtained
by using the full polynomial of orderN while the low order interpolation ˜ϕL is obtained
by using only the four vertices of the quadrilateral element, thereby yielding a first-order
interpolation which, by definition, is monotonic.

The Lagrange–Galerkin spectral element method with FCT was run on the grids

(N, NE) = [(1, 80), (2, 40), (4, 20), (8, 10)]

with1t = 0.00875 up tot = 0.65625. Once again, the low order schemes resolve the shape
of the analytic solution much better, but they are quite diffusive. The higher order scheme
N= 8 also resolves the shape of the solution, but the contours are much too densely packed
and not nearly as finely defined as in the low order schemes. The schemeN= 4 results in
the overall best scheme for this problem. It resolves the shape of the analytic solution quite
well and does not suffer too much diffusion. Figure 10 shows the grid and contours for this
case. Note that the time step results in a Courant number ofσ = 1.02.

5.3. Computational Cost

Table VII summarizes the computational cost of using the spectral element both im-
plicitly (trapezoidal rule) and explicitly (Adams–Bashforth), and the Lagrange–Galerkin
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TABLE VII

Percentage Breakdown of the Computational Costs Incurred by the Spectral Element

Method and the Lagrange–Galerkin Spectral Element Method

Matrix Searching Element Total CPU
Method N inversion algorithms operations (seconds)

SEM 4 0.0 0.0 99.7 271
Adams–Bashforth 6 0.0 0.0 99.6 868
(3rd order) 8 0.0 0.0 98.9 1589

10 0.0 0.0 98.2 2776

SEM 4 52.3 0.0 47.6 304
Trapezoidal rule 6 42.2 0.0 57.6 2133
(2nd order) 8 72.1 0.0 27.6 2914

10 55.8 0.0 43.8 4314

L-G SEM 4 45.2 9.7 44.8 344
Trapezoidal rule 6 38.2 12.3 49.4 2361
(2nd order) 8 46.1 19.7 33.1 4100

10 46.3 25.7 27.6 5723

Note.These results are for the 2D advection–diffusion equation withσ = 0.5 (0.25 for SEM, Adams–
Bashforth) andµ= 0.01.

spectral element method. The results are illustrated for the 2D advection–diffusion equa-
tion. This case is chosen because the Lagrange–Galerkin method must solve a system of
matrix equations, whereas for the advection equation it does not. The computational cost
is divided into three categories:matrix inversion, searching algorithms, andelement oper-
ations. Matrix inversiondenotes the percentage of total time to invert the global matrix,
searching algorithmsis the percentage involving any operations required for the searching
of departure points, andelement operationsis the percentage involving any operation typ-
ically associated with the spectral element method. The explicit spectral element method
has to be run at a lower Courant number due to its limited stability. Nonetheless, it is by
far the most efficient. The error norms between the implicit and explicit spectral element
methods are virtually identical for this case. The interesting thing to note is that while the
Lagrange–Galerkin method is more expensive than the implicit spectral element method, it
is not prohibitively expensive. In fact, the cost involving the searching algorithms increases
with increasingN but at a constant rate. Most of the cost, in fact, is in the matrix inversion. In
other words, in order to optimize this method, the focus should be on the matrix inversions
or in the element operations and not in the searching algorithms. Note that the resulting
matrix for the Lagrange–Galerkin spectral element method is symmetric positive definite
which lends itself to efficient iterative solvers such as conjugate gradient methods. Finally,
the Lagrange–Galerkin spectral element method can be doubled in efficiency merely by
using a Courant number twice as large. Table VI shows that the Lagrange–Galerkin spec-
tral element method can be run using large Courant numbers up to 2 or greater without
diminishing in accuracy.

6. CONCLUSIONS

A new method, the Lagrange–Galerkin spectral element method, is introduced whereby
the Lagrange–Galerkin method and the spectral element method are combined. The main
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attraction of this method is that it uses the basis functions of the spectral element method
as the interpolating polynomial for the Lagrange–Galerkin calculation of the departure
points and the corresponding interpolations of the variables at these points. This makes
the method quite local in that the interpolation and calculations are all performed in an
element per element basis. This property is very important, particularly if we have an
interest in implementing the method with unstructured/adaptive grids and on distributed
memory computers; this topic, however, is left for future work.

The stability analysis shows that while the spectral element method is stable for largeσ ,
this range is not recommended as the accuracy decreases significantly. The analysis shows
that when the Lagrange–Galerkin method is fused with the spectral element method, this
decrease in accuracy no longer occurs, thereby allowing larger time steps to be used which
in turn increases the efficiency.

The 2D results on the various grids show that the Lagrange–Galerkin spectral element
method yields extremely accurate solutions, even while using large Cournat numbers and on
different types of grids. The icosahedral grid results are especially encouraging, particularly
because this grid has proven to be quite promising for applications on the sphere [5].
The results on the unstructured grid show that the Lagrange–Galerkin spectral element
method yields very good results, even on distorted grids and while using large Courant
numbers. However, because the Lagrange–Galerkin method relies heavily on interpolation,
the spectral element basis functions must be of a sufficiently high order to obtain accurate
values at the departure points. The analysis shows thatN must be greater than four, in
order to reap the full benefits of this new hybrid scheme. This is not the order which is
recommended, but rather, it is the minimum order that ought to be used. Increasing the
order ofN beyond this minimum value increases the accuracy of the scheme but also incurs
additional computational costs. The costs are not prohibitive, but they are nonetheless
expensive. However, the dominant parts of the algorithm are the same operations which
plague any implicit method, namely, the inversion of the global matrix. Efforts to optimize
the method are currently underway. In addition, explicit time discretization methods such
as those proposed in [6, 8] may have to be explored, thereby eliminating the need to invert
a global matrix.
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